
Software
Technology 
Review

What's New

Background & 
Overview

Technology
Descriptions

Defining
Software 
Technology

Technology
Categories

Template for 
Technology 
Descriptions

Taxonomies

Glossary & 
Indexes

Feedback & 
Participation

Software
Engineering 
Information 
Repository 
(SEIR)

Rollover Popup Hints for Topic Navigation Buttons above

Client/Server Software Architectures--An Overview

Status

Advanced 

Purpose and Origin

The term client/server was first used in the 1980s in reference to personal 
computers (PCs) on a network. The actual client/server model started gaining 
acceptance in the late 1980s. The client/server software architecture is a 
versatile, message-based and modular infrastructure that is intended to 
improve usability, flexibility, interoperability, and scalability as compared to 
centralized, mainframe, time sharing computing. 

A client is defined as a requester of services and a server is defined as the 
provider of services. A single machine can be both a client and a server 
depending on the software configuration. For details on client/server software 
architectures see Schussel and Edelstein [Schussel 96, Edelstein 94]. 

This technology description provides a summary of some common 
client/server architectures and, for completeness, also summarizes mainframe 
and file sharing architectures. Detailed descriptions for many of the individual 
architectures are provided elsewhere in the document. 

Technical Detail

Mainframe architecture (not a client/server architecture). With mainframe 
software architectures all intelligence is within the central host computer. Users 
interact with the host through a terminal that captures keystrokes and sends 
that information to the host. Mainframe software architectures are not tied to a 
hardware platform. User interaction can be done using PCs and UNIX 
workstations. A limitation of mainframe software architectures is that they do 
not easily support graphical user interfaces (see Graphical User Interface 
Builders) or access to multiple databases from geographically dispersed sites. 
In the last few years, mainframes have found a new use as a server in 
distributed client/server architectures (see Client/Server Software 
Architectures) [Edelstein 94]. 

File sharing architecture (not a client/server architecture). The original PC 
networks were based on file sharing architectures, where the server 
downloads files from the shared location to the desktop environment. The 
requested user job is then run (including logic and data) in the desktop 
environment. File sharing architectures work if shared usage is low, update 
contention is low, and the volume of data to be transferred is low. In the 1990s, 
PC LAN (local area network) computing changed because the capacity of the 
file sharing was strained as the number of online user grew (it can only satisfy 
about 12 users simultaneously) and graphical user interfaces (GUIs) became 

Page 1 of 6Client/Server Software Architectures--An Overview

2/19/2012file:///C:/Data/WEB%20development/2012%20articles%20TO%20BE%20DONE/Data%2...



popular (making mainframe and terminal displays appear out of date). PCs are 
now being used in client/server architectures [Schussel 96, Edelstein 94]. 

Client/server architecture. As a result of the limitations of file sharing 
architectures, the client/server architecture emerged. This approach introduced 
a database server to replace the file server. Using a relational database 
management system (DBMS), user queries could be answered directly. The 
client/server architecture reduced network traffic by providing a query 
response rather than total file transfer. It improves multi-user updating through 
a GUI front end to a shared database. In client/server architectures, Remote 
Procedure Calls (RPCs) or standard query language (SQL) statements are 
typically used to communicate between the client and server [Schussel 96, 
Edelstein 94]. 

The remainder of this write-up provides examples of client/server architectures. 

Two tier architectures. With two tier client/server architectures (see Two Tier 
Software Architectures), the user system interface is usually located in the 
user's desktop environment and the database management services are 
usually in a server that is a more powerful machine that services many clients. 
Processing management is split between the user system interface 
environment and the database management server environment. The 
database management server provides stored procedures and triggers. There 
are a number of software vendors that provide tools to simplify development of 
applications for the two tier client/server architecture [Schussel 96, Edelstein 
94]. 

The two tier client/server architecture is a good solution for distributed 
computing when work groups are defined as a dozen to 100 people interacting 
on a LAN simultaneously. It does have a number of limitations. When the 
number of users exceeds 100, performance begins to deteriorate. This 
limitation is a result of the server maintaining a connection via "keep-alive" 
messages with each client, even when no work is being done. A second 
limitation of the two tier architecture is that implementation of processing 
management services using vendor proprietary database procedures restricts 
flexibility and choice of DBMS for applications. Finally, current implementations 
of the two tier architecture provide limited flexibility in moving (repartitioning) 
program functionality from one server to another without manually 
regenerating procedural code. [Schussel 96, Edelstein 94]. 

Three tier architectures. The three tier architecture (see Three Tier Software 
Architectures) (also referred to as the multi-tier architecture) emerged to 
overcome the limitations of the two tier architecture. In the three tier 
architecture, a middle tier was added between the user system interface client 
environment and the database management server environment. There are a 
variety of ways of implementing this middle tier, such as transaction processing 
monitors, message servers, or application servers. The middle tier can perform 
queuing, application execution, and database staging. For example, if the 
middle tier provides queuing, the client can deliver its request to the middle 
layer and disengage because the middle tier will access the data and return 
the answer to the client. In addition the middle layer adds scheduling and 
prioritization for work in progress. The three tier client/server architecture has 
been shown to improve performance for groups with a large number of users 
(in the thousands) and improves flexibility when compared to the two tier 
approach. Flexibility in partitioning can be a simple as "dragging and dropping" 
application code modules onto different computers in some three tier 
architectures. A limitation with three tier architectures is that the development 
environment is reportedly more difficult to use than the visually-oriented 
development of two tier applications [Schussel 96, Edelstein 94]. Recently, 

Page 2 of 6Client/Server Software Architectures--An Overview

2/19/2012file:///C:/Data/WEB%20development/2012%20articles%20TO%20BE%20DONE/Data%2...



mainframes have found a new use as servers in three tier architectures (see 
Mainframe Server Software Architectures). 

Three tier architecture with transaction processing monitor technology.
The most basic type of three tier architecture has a middle layer consisting of 
Transaction Processing (TP) monitor technology (see Transaction Processing 
Monitor Technology). The TP monitor technology is a type of message 
queuing, transaction scheduling, and prioritization service where the client 
connects to the TP monitor (middle tier) instead of the database server. The 
transaction is accepted by the monitor, which queues it and then takes 
responsibility for managing it to completion, thus freeing up the client. When 
the capability is provided by third party middleware vendors it is referred to as 
"TP Heavy" because it can service thousands of users. When it is embedded 
in the DBMS (and could be considered a two tier architecture), it is referred to 
as "TP Lite" because experience has shown performance degradation when 
over 100 clients are connected. TP monitor technology also provides 

� the ability to update multiple different DBMSs in a single transaction 
� connectivity to a variety of data sources including flat files, non-

relational DBMS, and the mainframe 
� the ability to attach priorities to transactions 
� robust security 

Using a three tier client/server architecture with TP monitor technology results 
in an environment that is considerably more scalable than a two tier 
architecture with direct client to server connection. For systems with thousands 
of users, TP monitor technology (not embedded in the DBMS) has been 
reported as one of the most effective solutions. A limitation to TP monitor 
technology is that the implementation code is usually written in a lower level 
language (such as COBOL), and not yet widely available in the popular visual 
toolsets [Schussel 96]. 

Three tier with message server. Messaging is another way to implement 
three tier architectures. Messages are prioritized and processed 
asynchronously. Messages consist of headers that contain priority information, 
and the address and identification number. The message server connects to 
the relational DBMS and other data sources. The difference between TP 
monitor technology and message server is that the message server 
architecture focuses on intelligent messages, whereas the TP Monitor 
environment has the intelligence in the monitor, and treats transactions as 
dumb data packets. Messaging systems are good solutions for wireless 
infrastructures [Schussel 96]. 

Three tier with an application server. The three tier application server 
architecture allocates the main body of an application to run on a shared host 
rather than in the user system interface client environment. The application 
server does not drive the GUIs; rather it shares business logic, computations, 
and a data retrieval engine. Advantages are that with less software on the 
client there is less security to worry about, applications are more scalable, and 
support and installation costs are less on a single server than maintaining each 
on a desktop client [Schussel 96]. The application server design should be 
used when security, scalability, and cost are major considerations [Schussel 
96]. 

Three tier with an ORB architecture. Currently industry is working on 
developing standards to improve interoperability and determine what the 
common Object Request Broker (ORB) will be. Developing client/server 
systems using technologies that support distributed objects holds great 

Page 3 of 6Client/Server Software Architectures--An Overview

2/19/2012file:///C:/Data/WEB%20development/2012%20articles%20TO%20BE%20DONE/Data%2...



pomise, as these technologies support interoperability across languages and 
platforms, as well as enhancing maintainability and adaptability of the system. 
There are currently two prominent distributed object technolgoies: 

� Common Object Request Broker Architecture (CORBA)
� COM/DCOM (see Component Object Model (COM), DCOM, and 

Related Capabilities). 

Industry is working on standards to improve interoperability between CORBA 
and COM/DCOM. The Object Management Group (OMG) has developed a 
mapping between CORBA and COM/DCOM that is supported by several 
products [OMG 96]. 

Distributed/collaborative enterprise architecture. The 
distributed/collaborative enterprise architecture emerged in 1993 (see 
Distributed/Collaborative Enterprise Architectures). This software architecture 
is based on Object Request Broker (ORB) technology, but goes further than 
the Common Object Request Broker Architecture (CORBA) by using shared, 
reusable business models (not just objects) on an enterprise-wide scale. The 
benefit of this architectural approach is that standardized business object 
models and distributed object computing are combined to give an organization 
flexibility to improve effectiveness organizationally, operationally, and 
technologically. An enterprise is defined here as a system comprised of 
multiple business systems or subsystems. Distributed/collaborative enterprise 
architectures are limited by a lack of commercially-available object orientation 
analysis and design method tools that focus on applications [Shelton 93, Adler 
95]. 

Usage Considerations

Client/server architectures are being used throughout industry and the military. 
They provide a versatile infrastructure that supports insertion of new 
technology more readily than earlier software designs. 

Maturity

Client/server software architectures have been in use since the late 1980s. 
See individual technology descriptions for more detail. 

Costs and Limitations

There a number of tradeoffs that must be made to select the appropriate 
client/server architecture. These include business strategic planning, and 
potential growth on the number of users, cost, and the homogeneity of the 
current and future computational environment. 

Dependencies

If a distributed object approach is employed, then the CORBA and/or 
COM/DCOM technologies should be considered (see Common Object 
Request Broker Architecture and Component Object Model (COM), DCOM, 
and Related Capabilities). 

Alternatives

Page 4 of 6Client/Server Software Architectures--An Overview

2/19/2012file:///C:/Data/WEB%20development/2012%20articles%20TO%20BE%20DONE/Data%2...



Alternatives to client/server architectures would be mainframe or file sharing 
architectures. 

Complementary Technologies

Complementary technologies for client/server architectures are computer-
aided software engineering (CASE) tools because they facilitate client/server 
architectural development, and open systems (see COTS and Open Systems--
An Overview) because they facilitate the development of architectures that 
improve scalability and flexibility. 

Index Categories

This technology is classified under the following categories. Select a category 
for a list of related topics. 

References and Information Sources

Name of technology Client/Server Software Architectures 

Application category Software Architecture Models
(AP.2.1.1) 

Quality measures 
category 

Usability (QM.2.3)
Scalability (QM.4.3)
Maintainability (QM.3.1) 
Interoperability (QM.4.1) 

[Adler 95] Adler, R. M. "Distributed Coordination Models for 
Client/Sever Computing." Computer 28, 4 (April 
1995): 14-22. 

[Dickman 95] Dickman, A. "Two-Tier Versus Three-Tier Apps." 
Informationweek 553 (November 13, 1995): 74-
80. 

[Edelstein 94] Edelstein, Herb. "Unraveling Client/Server 
Architecture." DBMS 7, 5 (May 1994): 34(7). 

[Gallaugher 96] Gallaugher, J. & Ramanathan, S. "Choosing a 
Client/Server Architecture. A Comparison of 
Two-Tier and Three-Tier Systems." Information 
Systems Management Magazine 13, 2 (Spring 
1996): 7-13. 

[Louis 95] Louis [online]. Available WWW 
<URL: http://www.softis.is/> (1995). 

[Newell 95] Newell, D.; Jones, O.; & Machura, M. 
"Interoperable Object Models for Large Scale 
Distributed Systems," 30-31. Proceedings. 
International Seminar on Client/Server 
Computing. La Hulpe, Belgium, October 30-31, 
1995. London, England: IEE, 1995. 

[OMG 96] Object Management Group home page [online]. 

Page 5 of 6Client/Server Software Architectures--An Overview

2/19/2012file:///C:/Data/WEB%20development/2012%20articles%20TO%20BE%20DONE/Data%2...



Current Author/Maintainer

Darleen Sadoski, GTE 

External Reviewers

Frank Rogers, GTE 

Modifications

2 August 97: added reference [OMG 96] 
25 June 97: Ed Morris (SEI) updated paragraphs containing information about 
COM/DCOM 
10 Jan 97 (original) 

The Software Engineering Institute (SEI) is a federally funded research and development center 
sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University. 

Copyright 2001 by Carnegie Mellon University
URL: http://www.sei.cmu.edu/str/descriptions/clientserver_body.html 
Last Modified: 22 September 2000 

Available WWW 
<URL: http://www.omg.org/> (1996). 

[Schussel 96] Schussel, George. Client/Server Past, Present, 
and Future [online]. Available WWW 
<URL: http://www.dciexpo.com/geos/> (1995). 

[Shelton 93] Shelton, Robert E. "The Distributed Enterprise 
(Shared, Reusable Business Models the Next 
Step in Distributed Object Computing)." 
Distributed Computing Monitor 8, 10 (October 
1993): 1. 

Page 6 of 6Client/Server Software Architectures--An Overview

2/19/2012file:///C:/Data/WEB%20development/2012%20articles%20TO%20BE%20DONE/Data%2...


